首页 | 本学科首页   官方微博 | 高级检索  
     


A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs
Authors:Al-Nakkash L  Hu S  Li M  Hwang T C
Affiliation:Department of Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA. Al-NakkashL@missouri.edu
Abstract:We have investigated the mechanism of action of two benzimidazolone analogs (NS004 and NS1619) on DeltaF508-CFTR using both whole-cell and cell-attached patch-clamp techniques and compared their effects with those of genistein. We conclude that benzimidazolone analogs and genistein act through a common mechanism, based on the following evidence: 1) both act only on phosphorylated CFTR, 2) the maximal DeltaF508-CFTR current activated by benzimidazolone analogs is identical to that induced by genistein, 3) benzimidazolone analogs increase the open probability of the forskolin-dependent DeltaF508-CFTR channel activity through an increase of the channel open time and a decrease of the channel closed time (effects indistinct from those reported for genistein), and 4) the prolonged K1250A-CFTR channel open time (in the presence of 10 microM forskolin) is unaffected by benzimidazolone analogs or genistein, supporting the hypothesis that these compounds stabilize the open state by inhibiting ATP hydrolysis at nucleotide binding domain 2 (NBD2). In addition, we demonstrate that NS004 and NS1619 are more potent CFTR activators than genistein (EC(50) values are 87 +/- 14 nM, 472 +/- 88 nM, and 4.4 +/- 0.5 microM, respectively). From our studies with the double mutant DeltaF508/K1250A-CFTR, we conclude that benzimidazolone analogs and genistein rectify the DeltaF508-CFTR prolonged closed time independent of their effects on channel open time, since these agonists enhance DeltaF508/K1250A-CFTR activity by shortening the channel closed time. These studies should pave the way toward understanding the agonist binding sites at a molecular level.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号