首页 | 本学科首页   官方微博 | 高级检索  
     

Logistic回归的主成分改进方法探讨及其医学应用
引用本文:周菲,焦桂梅,赵凤兰,魏兴民. Logistic回归的主成分改进方法探讨及其医学应用[J]. 数理医药学杂志, 2014, 0(1): 25-28
作者姓名:周菲  焦桂梅  赵凤兰  魏兴民
作者单位:甘肃中医学院公共课部,兰州730000
基金项目:甘肃省教育科学“十二五”规划课题([2012]GSG-XG037)
摘    要:研究Logistic回归模型的主成分回归改进方法。在医学研究中,尤其是在流行病的发病因素分析中,应用主成分回归进行多重共线性的改进处理,可以削减自变量观察矩阵之间的多重共线性,建立较为理想的关系模型,提高结果的可靠性;便于医学研究者正确合理的建立Logistic回归模型,处理混杂因素,预测疾病和判别分类。

关 键 词:Logistic回归  多重共线性  主成分回归  SPSS17.0

The Study on the Enhancing Methods of Principal Component of Logistic Regression and Their Application to Medicine
Affiliation:Zhou Fei,et al (Department of Basic Courses, Gansu College of Traditional Chinese Medicine, Lanzhou 730000)
Abstract:This article mainly studies the enhancing methods of the principal component of Logistic Re- gression. In medical research, especially in the analyses of the aetiological agents of opidemics, the applica- tion of principal component regression to the improvements o{ multi-eollinearity can reduce the multi-col- linearity between matrices of variables , build up relatively ideal relation models and improve the reliability of results. Meanwhile, it enables medical researchers to establish rational Logistic Regression models, deal with thorny problems, predict diseases and elassify them.
Keywords:Logistic regression  multi-collinearity  principal component regression~ SPSS17.0
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号