Maturation-dependent differences in regulation of sarcoplasmic reticulum Ca(2+) ATPase in sheep myocardium in response to pressure overload: a possible mechanism for maturation-dependent systolic and diastolic dysfunction |
| |
Authors: | Aoyagi T Fujii A M Flanagan M F Arnold L Mirsky I Izumo S |
| |
Affiliation: | Cardiovascular Division, Brigham & Women's Hospital, 330 Brookline Ave., Boston, Massachusetts 02115, U.S.A. |
| |
Abstract: | We have previously demonstrated that pressure-overload hypertrophy in adult sheep is associated with myocardial dysfunction whereas that in young lambs is associated with normal contractility. To probe for possible mechanisms of these age-dependent differences, we assessed mRNA expression of genes encoding critical components of myocardial Ca(2+) handling in the same animal model. We studied left ventricular myocardium of young and adult sheep with short-term (48 h) and long-term (6 wk) pressure overload induced by ascending aortic constriction. Six weeks of pressure overload induced the significant left ventricular hypertrophy (36 and 39% increase in left ventricular/body weight ratio in lambs and sheep, respectively). The Ca(2+) ATPase and Na(+)/Ca(2+) exchanger mRNA decreased with pressure overload only in the adult (p < 0.05). Ca(2+) channel mRNA was slightly increased by pressure overload regardless of age (p < 0.05). Calsequestrin, sarcoplasmic reticulum Ca(2+) release channel, or myosin heavy-chain mRNA levels did not significantly differ. In adult sheep after 6 wk of pressure overload, decreases in load-adjusted midwall shortening (systolic dysfunction) and prolongation of relaxation time constant (diastolic dysfunction) correlated with decreases in Ca(2+)-ATPase mRNA. The sarcoplasmic reticulum Ca(2+)-ATPase protein level and Ca(2+) uptake activity of isolated sarcoplasmic reticulum vesicles were depressed only in the adult with pressure-overload hypertrophy but not in the young. We demonstrated age-dependent differences in mRNA expression of Ca(2+)-handling protein genes in response to pressure overload, which preceded the occurrence of hypertrophy and myocardial dysfunction. Thus, altered expression of Ca(2+)-handling protein genes may be one of the primary responses to pressure overload rather than a phenomenon secondary to myocardial hypertrophy. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|