首页 | 本学科首页   官方微博 | 高级检索  
     


8-OH-DPAT prevents cardiac arrhythmias and attenuates tachycardia during social stress in rats
Authors:Nalivaiko Eugene  Mastorci Francesca  Sgoifo Andrea
Affiliation:a School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
b Stress Physiology Laboratory, Department of Evolutionary and Functional Biology, University of Parma, Parma, Italy
Abstract:The aim of this study was to apply a behavioural stress paradigm for studying the neural mechanisms underlying stress-induced arrhythmias, and to test whether such arrhythmias could be suppressed by systemic administration of 8-OH-DPAT, a 5-HT1A agonist possessing central sympatholytic properties. The study was conducted on adult male rats instrumented for telemetric recordings of ECG, body temperature and locomotor activity. In the first experiment, rats were subjected to social defeat after either 8-OH-DPAT (100 µg/kg s.c.) or vehicle injection. In the second experiment, prior to vehicle/8-OH-DPAT administration, animals were pre-treated with zatebradine, a blocker of the pacemaker current. 8-OH-DPAT caused prolongation of basal RR interval, increase in locomotion and hypothermia. Subjecting vehicle-treated animals to social defeat caused shortening in RR interval, increase in locomotor activity and hyperthermia, and provoked the occurrence of premature ventricular and supraventricular beats; all these effects were substantially attenuated by 8-OH-DPAT. Zatebradine caused prolongation of RR interval. In zatebradine/vehicle-treated rats, the incidence of ventricular and supraventricular premature beats during defeat increased 2.5-fold and 3.5-fold, respectively. 8-OH-DPAT administered after zatebradine significantly reduced these stress-induced arrhythmias. We conclude that: i) pharmacologically induced prolongation of RR interval may contribute to an increased susceptibility to stress-induced cardiac arrhythmias, possibly due to the prolongation of the ventricular diastolic period with restored excitability; and ii) systemic administration of 8-OH-DPAT abolishes these arrhythmic events, likely by suppressing stress-induced cardiac sympathetic outflow.
Keywords:Cardiac arrhythmia   Heart rate   Autonomic   Serotonin   Brainstem   Psychological stress
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号