首页 | 本学科首页   官方微博 | 高级检索  
检索        


In vivo mapping of a sequence required for interference with the yeast killer virus.
Authors:B F Huan  Y Q Shen  and J A Bruenn
Institution:Department of Biological Sciences, State University of New York, Buffalo 14260.
Abstract:The Saccharomyces cerevisiae viruses are noninfectious double-stranded RNA viruses whose segments are separately encapsidated. A large viral double-stranded RNA (L1; 4580 base pairs) encodes all required viral functions. M1, a double-stranded RNA of 1.9 kilobases, encodes an extracellular toxin (killer toxin) and cellular immunity to that toxin. Some strains contain smaller, S, double-stranded RNAs, derived from M1 by internal deletion. Particles containing these defective interfering RNAs can displace M1 particles by faster replication and thus convert the host strain to a nonkiller phenotype. In this work, we report the development of an assay in which the expression of S plus-strand from an inducible plasmid causes the loss of M1 particles. This assay provides a convenient method for identifying in vivo cis-acting sequences important in viral replication and packaging. We have mapped the sequence involved in interference to a region of 132 base pairs that includes two sequences similar to the viral binding site sequence previously identified in L1 by in vitro experiments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号