首页 | 本学科首页   官方微博 | 高级检索  
     


Computation of the Electrical Resistance of a Low Current Multi-Spot Contact
Authors:Gideon Gwanzuwang Dankat  Laurentiu Marius Dumitran
Affiliation:Laboratory of Electrical Materials, Faculty of Electrical Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
Abstract:In high complexity electrical systems such as those used in the automotive industries, electric connectors play an important role. The automotive industry is gradually shifting its attention to electric cars, which means more electrical connectors for sensors and data collection. A fault in connectors for sensors used in a vehicle can cause drastic damage to capital equipment and, in the worst case, the loss of life. The studies of faults or degradation of electrical contacts are essential for safety in vehicles and various industries. Although such faults can be due to numerous factors (such as dust, humidity, mechanical vibration, etc.) and some yet to be discovered, high contact resistance is the main factor causing erratic behavior of electrical contacts. This paper presents a study on the computation of electrical contact resistance of two metal conductors (in the form of a disk) with analytical relations and a numerical computation model based on the finite element method (FEM) in COMSOL Multiphysics. The contact spots were considered to have a higher electrical resistivity value (ρcs) than those of the two metal conductors (ρCu). Studies such as the one in view that is carried out on a microscopic level are often difficult to investigate experimentally. Therefore, with the help of a simplified numerical model, the consequences of the degradation of electrical contacts are investigated. To validate the FEM model, the numerical results were compared to those obtained from analytical models.
Keywords:electrical contact   contact resistance   electrical connector   numerical analysis   FEM   COMSOL Multiphysics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号