首页 | 本学科首页   官方微博 | 高级检索  
     


Haloperidol-induced catalepsy is absent in dopamine D(2), but maintained in dopamine D(3) receptor knock-out mice
Authors:Boulay D  Depoortere R  Oblin A  Sanger D J  Schoemaker H  Perrault G
Affiliation:Department of Psychopharmacology, Sanofi-Synthélabo, 31 ave P. Vaillant-Couturier, 92220, Bagneux, France. denis.boulay@sanofi.synthelabo.com
Abstract:We have previously found that mice homozygous for the deletion of the dopamine D(2) receptor gene (D(2)(-/-) mice) do not present spontaneous catalepsy when tested in a "bar test". In the present study, we sought to analyse the reactivity of D(2) receptor mutant mice to the cataleptogenic effects of dopamine D(2)-like or D(1)-like receptor antagonists. In parallel, we assessed the cataleptogenic effects of these antagonists in dopamine D(3) receptor mutant mice. D(2)(-/-) mice were totally unresponsive to the cataleptogenic effects of the dopamine D(2)-like receptor antagonist haloperidol (0.125-2 mg/kg i.p.), while D(2)(+/-) mice, at the highest haloperidol doses tested, showed a level of catalepsy about half that of wild-type controls. The degree of haloperidol-induced catalepsy was thus proportional to the level of striatal dopamine D(2) receptor expression (0.50, 0.30 and 0.08 pmol/mg protein as measured at 0.25 nM [3H]spiperone for D(2)(+/+), D(2)(+/-) and D(2)(-/-) mice, respectively). However, D(2)(-/-) and D(2)(+/-) mice were as sensitive as their wild-type counterparts to the cataleptogenic effects of the dopamine D(1)-like receptor antagonist R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390: 0.03-0.6 mg/kg s.c.). Striatal dopamine D(1) receptor expression (as measured using [3H]SCH 23390 binding) was not significantly affected by the genotype. The ability of SCH 23390 to induce catalepsy in D(2)(-/-) mice suggests that their resistance to haloperidol-induced catalepsy is due to the absence of dopamine D(2) receptors, and not to the abnormal striatal synaptic plasticity that has been shown by others to occur in these mice. In agreement with the observation that dopamine D(2) and dopamine D(1) receptor expression was essentially identical in D(3)(+/+), D(3)(+/-) and D(3)(-/-) mice, dopamine D(3) receptor homozygous and heterozygous mutant mice, on the whole, did not differ from their controls in the time spent in a cataleptic position following administration of either haloperidol (0.5-2 mg/kg i.p.) or SCH 23390 (0.03-0.6 mg/kg s.c.). Also, dopamine D(3) receptor mutant mice were no more responsive than wild-type controls when co-administered subthreshold doses of haloperidol (0.125 mg/kg) and SCH 23390 (0.03 mg/kg), suggesting that dopamine D(3) receptor knock-out mice are not more sensitive than wild-types to the synergistic effects of concurrent blockade of dopamine D(2) and dopamine D(1) receptors in this model. These results suggest that the dopamine D(2) receptor subtype is necessary for haloperidol to produce catalepsy, and that the dopamine D(3) receptor subtype appears to exert no observable control over the catalepsy produced by dopamine D(2)-like, D(1)-like and the combination of D(1)-like and D(2)-like receptor antagonists.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号