Abstract: | Rationale The atypical antipsychotic drug (APD) clozapine (CLZ) has been shown to have a robust discriminative cue in rats, pigeons, and monkeys in two-choice drug discrimination procedures.Objectives The present study determined whether a two-choice drug discrimination procedure with CLZ could be established in C57BL/6 mice and whether this procedure could distinguish between atypical and typical APDs.Methods C57BL/6 male mice were trained to discriminate 2.5 mg/kg CLZ from vehicle in a two-lever drug discrimination procedure.Results Generalization testing with CLZ produced full substitution at the 2.5- and 5.0-mg/kg doses with an ED50 of 1.14 mg/kg. The atypical APDs olanzapine (ED50=0.24 mg/kg), risperidone (ED50=0.072 mg/kg), and ziprasidone (ED50=0.33 mg/kg) fully substituted for CLZs discriminative cue, while the typical APD haloperidol failed to substitute for CLZ. Generalization testing with selective ligands showed that the serotonin (5-HT)2A/2B/2C antagonist ritanserin fully substituted for CLZ (ED50=2.08 mg/kg) and that the 5-HT receptor agonist quipazine significantly attenuated CLZs discriminative cue without disrupting response rates. The muscarinic receptor antagonist scopolamine, the dopamine agonist amphetamine, and the 5-HT agonist quipazine failed to substitute for CLZ.Conclusions These results demonstrated that antagonism of 5-HT receptors plays an important role in mediating the discriminative stimulus properties of the atypical APD CLZ in C57BL/6 mice. The atypical APDs olanzapine, risperidone, and ziprasidone fully substituted for CLZ, while the typical APD haloperidol did not. These results suggest that CLZ drug discrimination in C57BL/6 mice may be an effective preclinical behavioral assay for screening atypical from typical antipsychotic drugs. |