A critical role for 14-3-3zeta protein in regulating the VWF binding function of platelet glycoprotein Ib-IX and its therapeutic implications |
| |
Authors: | Dai Kesheng Bodnar Richard Berndt Michael C Du Xiaoping |
| |
Affiliation: | Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave, Chicago, IL 60612, USA. |
| |
Abstract: | The platelet receptor for von Willebrand factor (VWF), glycoprotein (GP) Ib-IX, mediates platelet adhesion and activation. The cytoplasmic domains of the GPIb alpha and beta subunits contain binding sites for the phosphorylation-dependent signaling molecule, 14-3-3zeta. Here we show that a novel membrane-permeable inhibitor of 14-3-3zeta-GPIbalpha interaction, MPalphaC, potently inhibited VWF binding to platelets and VWF-mediated platelet adhesion under flow conditions. MPalphaC also inhibited VWF-dependent platelet agglutination induced by ristocetin. Furthermore, activation of the VWF binding function of GPIb-IX induced by GPIbbeta dephosphorylation is diminished by mutagenic disruption of the 14-3-3zeta binding site in the C-terminal domain of GPIbalpha, mimicking MPalphaC-induced inhibition, indicating that the inhibitory effect of MPalphaC is likely to be caused by disruption of 14-3-3zeta binding to GPIbalpha. These data suggest a novel 14-3-3zeta-dependent regulatory mechanism that controls the VWF binding function of GPIb-IX, and also suggest a new type of antiplatelet agent that may be potentially useful in preventing or treating thrombosis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《Blood》浏览原始摘要信息 |
|
点击此处可从《Blood》下载免费的PDF全文 |
|