首页 | 本学科首页   官方微博 | 高级检索  
     

基于交叉对比神经网络的心音分类
引用本文:任灵,黄玉丹,陈颖. 基于交叉对比神经网络的心音分类[J]. 中国医学物理学杂志, 2021, 0(10): 1251-1257. DOI: DOI:10.3969/j.issn.1005-202X.2021.10.012
作者姓名:任灵  黄玉丹  陈颖
作者单位:南京大学电子科学与工程学院, 江苏 南京 210023
摘    要:目的:通过交叉对比神经网络(CCNN)实现心音信号的自动分类,从而对心血管疾病进行早期诊断。方法:实验基于PhysioNet/Cinc 2016心音数据库。训练集和测试集数据来自互斥的健康受试者/病理患者,并以4:1的比例进行划分,输入CCNN。CCNN利用深度卷积神经网络进行特征提取,结合基于信息的相似度度量理论(IBS),对特征向量间的相似性进行度量并分类。结果:实验结果得出灵敏度为0.834 6,特异性为0.962 3,最终大赛综合得分为0.898 5。结论:CCNN使用交叉对比的输入模式扩充数据量,引入信号间的对比信息,同时在神经网络的训练过程中应用统计学思想,使网络具备良好的泛化性,更加适应医学数据量较少的场景,在心音分类中取得较好的结果。

关 键 词:心音分类  交叉对比神经网络  基于信息的相似度度量理论  深度学习

Heart sound classification based on cross-contrast neural network
REN Ling,HUANG Yudan,CHEN Ying. Heart sound classification based on cross-contrast neural network[J]. Chinese Journal of Medical Physics, 2021, 0(10): 1251-1257. DOI: DOI:10.3969/j.issn.1005-202X.2021.10.012
Authors:REN Ling  HUANG Yudan  CHEN Ying
Affiliation:School of Electrical Science and Engineering, Nanjing University, Nanjing 210023, China
Abstract:Abstract: Objective To automatically classify heart sound signals by cross-contrast neural network (CCNN), thereby realizing the early diagnosis of cardiovascular diseases. Methods The experiment was carried out based on PhysioNet/Cinc 2016 heart sound database. The training set and test set data which came from mutually exclusive healthy subjects/pathological patients were divided at a ratio of 4:1 and then input into CCNN. Finally, CCNN used deep convolutional neural network for feature extraction and was combined with information-based similarity measurement theory to measure and classify the similarity between feature vectors. Results The sensitivity and specificity of CCNN for heart sound classification in the experiment were 0.834 6 and 0.962 3, respectively, and the overall score reached 0.898 5. Conclusion By expanding the amount of data using a cross-contrast input mode, introducing contrast information between signals and applying statistical ideas in the training process of neural networks, CCNN has good generalization and is more suitable for small medical data, having a good performance in heart sound classification.
Keywords:Keywords: heart sound classification cross-contrast neural network information-based similarity measurement theory deep learning
本文献已被 CNKI 等数据库收录!
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号