首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characteristic expression of globotriaosyl ceramide in human ovarian carcinoma-derived cells with anticancer drug resistance
Authors:Kiguchi Kazushige  Iwamori Yuriko  Suzuki Nao  Kobayashi Yoichi  Ishizuka Bunpei  Ishiwata Isamu  Kita Tsunekazu  Kikuchi Yoshihiro  Iwamori Masao
Institution:Department of Obstetrics and Gynecology, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
Abstract:The transporter protein genes and lipids in human ovarian carcinoma-derived KF28 cells with anticancer-drug-sensitive properties were compared with those in resistant cells, taxol-resistant KF28TX, cisplatin-resistant KFr13, and taxol- and cisplatin-resistant KFr13TX, to identify the molecules required for anticancer-drug resistance. In accordance with previous reports, taxol and cisplatin resistance was closely correlated with expression of the multidrug resistance 1 and bile acid export pump, and multidrug resistance-associated protein 2 genes, respectively. In addition, we found a distinct difference in glycosphingolipids between the sensitive and resistant cells. Although GlcCer was the major glycolipid (83.0%) in sensitive cells, GalCer, LacCer and, particularly, Gb(3)Cer were characteristically increased in all resistant cells, irrespective of whether the resistance was to taxol or cisplatin, and comprised 65-84% of total glycosphingolipids. GM3, which was present at 0.04 microg/mg dry weight in the sensitive cells, showed a twofold increase in the taxol-resistant cells, but was absent in the cisplatin-resistant cells. The altered glycolipid composition was proven to be due to enhanced or suppressed expression of the respective sugar transferase genes. In addition, the ceramide moiety of ceramide monohexoside in the sensitive cells constituted 83% of non-hydroxy fatty acids, but that in the resistant cells comprised 67-74% of alpha-hydroxy fatty acids. Thus, cells containing Gb(3)Cer with alpha-hydroxy fatty acids were found to survive selectively in the presence of taxol and cisplatin, and modification of the glycolipid structure was revealed to occur in association with anticancer-drug resistance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号