首页 | 本学科首页   官方微博 | 高级检索  
检索        

两种聚(左旋乳酸-己内酯)静电纺纳米纤维膜的性能比较
引用本文:张建松,张鹏云,徐晓红,莫秀梅,何创龙,王红声.两种聚(左旋乳酸-己内酯)静电纺纳米纤维膜的性能比较[J].中国神经再生研究,2009,13(8):1495-1499.
作者姓名:张建松  张鹏云  徐晓红  莫秀梅  何创龙  王红声
作者单位:东华大学,.东华大学纤维材料改性国家重点实验室,东华大学化学化工与生物工程学院,东华大学材料科学与工程学院;东华大学纤维材料改性国家重点实验室;东华大学化学化工与生物工程学院,东华大学化学化工与生物工程学院,东华大学化学化工与生物工程学院
基金项目:国家自然科学基金资助项目(30570503)*;上海市2005年浦江人才计划(05PJ14013)*;高等学校学科创新引智计划(b07024)*
摘    要:背景:聚左旋乳酸和聚己内酯各自都有其优点与缺点,而共聚或共混后性能可以得到有效的改善,但因为两者添加比例的不同会对性能有一定的影响,在不同的纺丝溶液浓度下纺出的纤维性能亦会有所差异。 目的:通过对两种原料聚(左旋乳酸-己内酯) (75/25;50/50)在不同纺丝液浓度下制得的纳米纤维膜各种性能的比较,选出最佳的原料和相应的纺丝液浓度。 设计、时间及地点:对比观察实验,于2007-09/2008-11在东华大学生物材料与组织工程实验室完成。 材料:将聚聚(左旋乳酸-己内酯)材料在乳酸/己内酯为75/25和50/50两种比例下,在质量分数为4%,6%,8%和10%纺丝液浓度下通过静电纺丝制备纳米纤维膜。 方法:扫描电镜样品经表面喷金后在10 kV加速电压下观察纤维膜的形貌。在万能材料测试机测试其断裂强度和断裂伸长率。采用MTT法测试猪髋动脉内皮细胞在纳米纤维膜上的黏附与增殖情况。 主要观察指标:静电纺纳米纤维膜的纤维形态、力学性能及生物相容性。 结果:通过扫描电镜观察发现由质量分数为6%聚(左旋乳酸-己内酯) (50/50)制备的纤维膜具有更好的纤维形态,且直径分布均匀;拉伸力学测试显示由聚(左旋乳酸-己内酯) (50/50)制备的纤维膜比聚(左旋乳酸-己内酯) (75/25)具有更高的断裂伸长率,但断裂应力较低;细胞生物相容性实验表明猪髋动脉内皮细胞在质量分数为6%和8%聚(左旋乳酸-己内酯) (50/50)的纳米纤维膜上更能有效的黏附与增殖。 结论:纺丝液质量分数为6%的聚(左旋乳酸-己内酯) (50/50)制得的纳米纤维膜各项性能较优。

关 键 词:聚(左旋乳酸-己内酯)  静电纺  纳米纤维膜  生物相容性

Performance comparison between two kinds of P(LLA-CL) electrospun nanofibers membranes
Abstract:BACKGROUND: Copolymerization or mixture of poly-L-lactide and polycaprolactone can improve the own properties of poly-L-lactide and polycaprolactone. However, the different ratio of each material, as well as the concentration of electrospun solution will result difference in performance. OBJECTIVE: To compare the performance between two kinds of P(LLA-CL)(75/25; 50/50) electrospun nanofibers membranes, further more, to select the optimal option of raw material and relevant concentration of electrospun solution. DESIGN, TIME AND SETTING: The contrast observation experiment was performed at the Biological Material and Tissue Engineering Laboratory of Donghua University from September 2007 to November 2008. MATERIALS: Two kinds of raw material P(LLA-CL)(75/25; 50/50) was added into spinning solvent with different quality ratios (4%, 6%, 8% or 10%) to prepare nanofibers membrances. METHODS: The morphous of nanofibers membrances was observed at the 10 kV accelerating voltage following coated interface. The mechanical properties of electrospun membranes were assayed by scanning electron microscopy (SEM). Water contact angle was detected by contact angle measurement. MTT method was used to determine cell adhesion and proliferation. MAIN OUTCOME MEASURES: Fiber morphology, hydrophilicity, mechanical property and biocompatibility of electrospun nanofiber membrance were observed. RESULTS: SEM results showed that the fiber morphology of P(LLA-CL)(50/50) 6% nanofibers membrance was better and more uniform diameter distribution. Mechanic test indicated nanofibers membrance of P(LLA-CL)(50/50) had longer breaking elongation but smaller breaking stress than nanofibers membrance of P(LLA-CL)(75/25). Hydrophilicity of P(LLA-CL)(75/25) fibers was better. MTT results proved that 6% and 8% P(LLA-CL)(50/50) nanofibers could enhance the adhesion and proliferation of endothelial cells on the surface of materials, and the cells had the best spreading and attachment on the nanofibers. CONCLUSION: Nanofibers membrane of 6% P(LLA-CL)(50/50) has full advantage of material properties.
Keywords:P(LLA-CL)  Electrospinning  Nanofibers membrane  Biocompatibility
点击此处可从《中国神经再生研究》浏览原始摘要信息
点击此处可从《中国神经再生研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号