Influence of meal composition on canine jejunal water and electrolyte absorption. |
| |
Authors: | J A Bastidas M J Zinner J A Bastidas M S Orandle C J Yeo |
| |
Affiliation: | Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland. |
| |
Abstract: | The absorption of water and electrolytes from the proximal jejunal lumen increases immediately after a meal. This meal-induced jejunal absorption occurs in jejunal segments out of normal gastrointestinal continuity. This study was designed to characterize the jejunal absorptive response to a series of isovolumetric gavage-delivered stimuli. Twenty-five-centimeter canine proximal jejunal Thiry-Vella fistulas were constructed, and jejunal absorption studies (n = 66) were performed by luminal perfusion of the jejunal segments with an isotonic buffer containing 14C-labeled polyethylene glycol. Each study consisted of a 1-hour basal period, followed by a 3-hour experimental period. Nine groups were studied, each receiving one of the following isovolumetric stimuli delivered via the gavage route: water, 0.9% saline, mixed meal, protein, lipid, carbohydrate, and mannitol (150 mmol/L, 300 mmol/L, and 600 mmol/L). The water and 0.9% saline gavage groups showed no significant changes in integrated postprandial water and electrolyte absorption above basal. The isocaloric mixed meal, protein, lipid, carbohydrate, and mannitol groups all had significantly increased integrated postprandial jejunal water and electrolyte absorption above basal (P less than 0.05). These results indicate that a proabsorptive signal for meal-induced jejunal absorption originates from or distal to the stomach. Meal-induced jejunal absorption occurs in response to nutrients of diverse composition and is also responsive to nonnutritive solutes such as mannitol. These findings support a new role for gastric or intestinal chemo- or osmo-receptors in stimulating the neurohumoral mechanisms that mediate meal-induced jejunal absorption. |
| |
Keywords: | |
|
|