首页 | 本学科首页   官方微博 | 高级检索  
     


Chlorpropamide raises fructose-2,6-bisphosphate concentration and inhibits gluconeogenesis in isolated rat hepatocytes
Authors:L Monge  M Mojena  J L Ortega  B Samper  M A Cabello  J E Feliu
Abstract:The addition of chlorpropamide to hepatocytes isolated from fed rats raised the cellular concentration of fructose-2,6-bisphosphate (F-2,6-P2), a regulatory metabolite that plays a relevant role in the control of hepatic glucose metabolism. The effect of chlorpropamide was dose dependent; a statistically significant increase was already seen at 0.2 mM of the sulfonylurea. The accumulation of F-2,6-P2 caused by chlorpropamide (1 mM) was parallel to the stimulation of L-lactate production (36.6 +/- 4.8 versus 26.1 +/- 2.6 mumol of lactate/g of cells X 20 min; N = 5, P less than 0.05) and to the inhibition of gluconeogenesis (0.57 +/- 0.1 versus 0.94 +/- 0.09 mumol of [U-14C]pyruvate converted to glucose/g of cells X 20 min; N = 5, P less than 0.05). In addition, chlorpropamide enhanced the inhibitory action evoked by insulin on glucagon-stimulated gluconeogenesis. This combined effect of chlorpropamide and insulin seems to be correlated with the synergistic accumulation of F-2,6-P2 provoked by the simultaneous action of these two agents on glucagon-treated hepatocytes. Finally, neither 6-phosphofructo-2-kinase activity nor hepatocyte cyclic AMP levels were significantly changed by the presence of the sulfonylurea in the incubation medium. Our results support the concept that chlorpropamide, by a cyclic AMP-independent mechanism, increases the hepatic content of F-2,6-P2 and, in this way, enhances the glycolytic flux and inhibits glucose output by the liver.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号