首页 | 本学科首页   官方微博 | 高级检索  
     


Primate basal ganglia activity in a precued reaching task: preparation for movement
Authors:Dieter Jaeger  Sid Gilman  J. Wayne Aldridge
Affiliation:(1) Department of Neurology, Neuroscience Lab. Bldg., University of Michigan, 1103 E, 48104 Huron, Ann Arbor, MI, USA
Abstract:Single cell activity was recorded from the primate putamen, caudate nucleus, and globus pallidus during a precued reaching movement task. Two monkeys were trained to touch one of several target knobs mounted in front of them after an LED was lighted on the correct target. A precue was presented prior to this target ldquogo cuerdquo by a randomly varied delay interval, giving the animals partial or complete advance information about the target for the movement task. The purpose of this design was to examine neuronal activity in the major structures of the basal ganglia during the preparation phase of limb movements when varying amounts of advance information were provided to the animals. The reaction times were shortest with complete precues, intermediate with partial precues, and longest with precues containing no information, demonstrating that the animals used precue information to prepare partly or completely for the reaching movement before the target go cue was given. Changes in activity were seen in the basal ganglia during the preparatory period in 30% of neurons in putamen, 31% in caudate nucleus, and 27% in globus pallidus. Preparatory changes were stronger and more closely linked to the time of movement initiation in putamen than in caudate nucleus. Although the amount of information contained in the precues had no significant effect on preparatory activity preceding the target go cue, a directional selectivity during this period was observed for a subset of neurons with preparatory changes (15% in putamen, 11% in caudate nucleus, 14% in globus pallidus) when the precue contained information about the upcoming direction of movement. A smaller subset of neurons showed selectivity for the preparation of movement amplitude. A larger number of preparatory changes showed selectivity for the direction or amplitude of movement following the target go cue than in the delay period before the cue. The intensity of preparatory changes in activity in many cases depended on the length of the delay interval preceding the target go cue. Even following the target go cue, the intensity of the preparatory changes in activity continued to be significantly influenced by the length of the preceding delay interval for 11% of changes in putamen, 8% in caudate nucleus, and 18% in globus pallidus. This finding suggests that preparatory activity in the basal ganglia takes part in a process termed motor readiness. Behaviorally, this process was seen as a shortening of reaction time regardless of precue information for trials in which the delay interval was long and the animals showed an increased readiness to move. Preparatory activity in putamen following the target go cue was most intense in trials with a short delay interval, in which motor readiness had not achieved its maximum level prior to the go cue. The results of this study indicate that the basal ganglia are involved in multiple aspects of preparatory processing for limb movement. Preparatory processing is therefore unlikely to be divided anatomically along the functional lines examined in this study. In the basal ganglia, preparatory processing reflects both preparation for target selection and control of timing the onset of movement (motor readiness). These characteristics can be integrated in a functional scheme in which the basal ganglia are predominantly responsible for the automated execution of well-trained behavior.
Keywords:Basal ganglia  Motor control  Precue  Single unit  Monkey
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号