首页 | 本学科首页   官方微博 | 高级检索  
检索        


Nogo receptor interacts with brain APP and Abeta to reduce pathologic changes in Alzheimer's transgenic mice
Authors:Park James H  Strittmatter Stephen M
Institution:Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
Abstract:Pathophysiologic hypotheses for Alzheimer's disease (AD) are centered on the role of the amyloid plaque Abeta peptide and the mechanism of its derivation from the amyloid precursor protein (APP). As part of the disease process, an aberrant axonal sprouting response is known to occur near Abeta deposits. A Nogo to Nogo-66 receptor (NgR) pathway contributes to determining the ability of adult CNS axons to extend after traumatic injuries. Here, we consider the potential role of NgR mechanisms in AD. Both Nogo and NgR are mislocalized in AD brain samples. APP physically associates with the NgR. Overexpression of NgR decreases Abeta production in neuroblastoma culture, and targeted disruption of NgR expression increases transgenic mouse brain Abeta levels, plaque deposition, and dystrophic neurites. Infusion of a soluble NgR fragment reduces Abeta levels, amyloid plaque deposits, and dystrophic neurites in a mouse transgenic AD model. Changes in NgR level produce parallel changes in secreted APP and AB, implicating NgR as a blocker of secretase processing of APP. The NgR provides a novel site for modifying the course of AD and highlights the role of axonal dysfunction in the disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号