首页 | 本学科首页   官方微博 | 高级检索  
     


On multiple alternating steady states induced by periodic spin phase perturbation waveforms
Authors:Giedrius T. Buračas  Youngkyoo Jung  Jongho Lee  Richard B. Buxton  Eric C. Wong  Thomas T. Liu
Affiliation:1. Center for Functional MRI, Department of Radiology, University of California, San Diego, La Jolla, California, USA;2. Department of Radiology, Wake Forest University School of Medicine, Winston‐Salem, North Carolina, USA;3. Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA;4. Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
Abstract:Direct measurement of neural currents by means of MRI can potentially open a high temporal resolution (10–100 ms) window applicable for monitoring dynamics of neuronal activity without loss of the high spatial resolution afforded by MRI. Previously, we have shown that the alternating balanced steady state imaging affords high sensitivity to weak periodic currents owing to its amplification of periodic spin phase perturbations. This technique, however, requires precise synchronization of such perturbations to the radiofrequency pulses. Herein, we extend alternating balanced steady state imaging to multiple balanced alternating steady states for estimation of neural current waveforms. Simulations and phantom experiments show that the off‐resonance profile of the multiple alternating steady state signal carries information about the frequency content of driving waveforms. In addition, the method is less sensitive than alternating balanced steady state to precise waveform timing relative to radiofrequency pulses. Thus, multiple alternating steady state technique is potentially applicable to MR imaging of the waveforms of periodic neuronal activity. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
Keywords:balanced SSFP  multiple alternating steady states  neural current MRI  MR‐encephalography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号