首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle
Authors:David Melvin Keller  Shigehiko Ogoh  Shane Greene  A. Olivencia-Yurvati   Peter B. Raven
Affiliation:University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
Abstract:In the present investigation we examined the role of ATP-sensitive potassium (KATP) channel activity in modulating carotid baroreflex (CBR)-induced vasoconstriction in the vasculature of the leg. The CBR control of mean arterial pressure (MAP) and leg vascular conductance (LVC) was determined in seven subjects (25 ± 1 years, mean ± s.e.m. ) using the variable-pressure neck collar technique at rest and during one-legged knee extension exercise. The oral ingestion of glyburide (5 mg) did not change mean arterial pressure (MAP) at rest (86 versus 89 mmHg, P > 0.05), but did appear to increase MAP during exercise (87 versus 92 mmHg, P = 0.053). However, the CBR–MAP function curves were similar at rest before and after glyburide ingestion. The CBR-mediated decrease in LVC observed at rest (∼39%) was attenuated during exercise in the exercising leg (∼15%, P < 0.05). Oral glyburide ingestion partially restored CBR-mediated vasoconstriction in the exercising leg (∼40% restoration, P < 0.05) compared to control exercise. These findings indicate that KATP channel activity modulates sympathetic vasoconstriction in humans and may prove to be an important mechanism by which functional sympatholysis operates in humans during exercise.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号