首页 | 本学科首页   官方微博 | 高级检索  
     


Control of upright stance over inclined surfaces
Authors:Rinaldo André Mezzarane  André Fabio Kohn
Affiliation:1.Neuroscience Program and Biomedical Engineering Laboratory,Universidade de S?o Paulo, EPUSP, PTC,S?o Paulo, SP,Brazil
Abstract:The present work investigated the control of upright posture on inclined surfaces (14°). Such conditions could, for example, change the contributions of muscle spindles resulting in alterations in postural sway. Subjects stood in quiet stance over a force platform positioned in one of three different fixed positions: horizontal (H), toes-up (ankle dorsi-flexion, D) and toes-down (ankle plantar-flexion, P). The experiments were done in the presence and also in the absence of vision. The analysis of the resulting sway was based on the power spectrum of the center of pressure displacement in the anterior–posterior direction (CP_ap). Analysis of the electromyogram (EMG) of the leg muscles and evaluation of the level of presynaptic inhibition (PSI) of the soleus (SO) Ia afferents complemented the study. The results showed that the spectrum of the CP_ap changed with the inclination of the surface of support. In condition D a higher instability was found as reflected by the higher spectral amplitudes at lower frequencies (below 0.3 Hz). On the other hand, the CP_ap of subjects in condition P contained increased amplitudes at high frequencies (above 0.3 Hz) and smaller amplitudes at low frequencies. The modifications found in the CP_ap power spectra when standing over an inclined surface may indicate changes in both short-term and long-term systems of postural control. These results do not seem to be associated with changes in group Ia feedback gain since no changes in the level of PSI were found among the three standing conditions. The SO EMG increased in condition P but did not change in condition D. On the other hand, the tibialis anterior had a tendency towards increased bursting activity in condition D. Eye closure caused an increase in the power of the oscillations at all spectral frequencies in the three standing conditions (H, P or D) and also a change in the profile of the CP_ap power spectrum. This may suggest a nonlinearity in the postural control system. The control of the slow component of the postural sway was more dependent on vision when the subject was in condition D, probably in association with the biomechanical constraints of standing on a toes-up ramp. A conclusion of this work was that, depending on the postural demand (direction of the ramp of support), the ensuing proprioceptive and biomechanical changes affect differentially the fast and slow mechanisms of balance control.
Keywords:Human  Posture  Motor control  Center of pressure  Quiet standing  Slope  EMG  Vision
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号