首页 | 本学科首页   官方微博 | 高级检索  
     


Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures
Authors:Vamsi Krishna B  Xue Weichang  Bose Susmita  Bandyopadhyay Amit
Affiliation:

aW.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA

Abstract:Functionally graded, hard and wear-resistant Co–Cr–Mo alloy was coated on Ti–6Al–4V alloy with a metallurgically sound interface using Laser Engineering Net Shaping (LENS™). The addition of the Co–Cr–Mo alloy onto the surface of Ti–6Al–4V alloy significantly increased the surface hardness without any intermetallic phases in the transition region. A 100% Co–Cr–Mo transition from Ti–6Al–4V was difficult to produce due to cracking. However, using optimized LENS™ processing parameters, crack-free coatings containing up to 86% Co–Cr–Mo were deposited on Ti–6Al–4V alloy with excellent reproducibility. Human osteoblast cells were cultured to test in vitro biocompatibility of the coatings. Based on in vitro biocompatibility, increasing the Co–Cr–Mo concentration in the coating reduced the live cell numbers after 14 days of culture on the coating compared with base Ti–6Al–4V alloy. However, coated samples always showed better bone cell proliferation than 100% Co–Cr–Mo alloy. Producing near net shape components with graded compositions using LENS™ could potentially be a viable route for manufacturing unitized structures for metal-on-metal prosthetic devices to minimize the wear-induced osteolysis and aseptic loosening that are significant problems in current implant design.
Keywords:Functionally graded materials   Laser processing   Laser engineered net shaping (LENS)   Biocompatibility   Osteoblast
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号