Abstract: | Various buccoadhesive nystatin tablets formulations containing xanthan, carbopols (934P, 971P, 974P), PVP K30 or PEG 6000 or their binary blends were prepared. The powders were compressed into tablets at a constant compression pressure. Drug release behaviour, swelling and erosion indices and strength of bioadhesion in vitro to a biological membrane were investigated. The interaction between nystatin and polymers was investigated by DSC and FT-IR. Tablets containing the different types of carbopol alone consistently showed an initial burst release of drug, whereas this was not observed for matrices containing xanthan or xanthan-carbopol. The presence of PEG in xanthan-containing formulations induced an increase in dissolution rate; however, in the absence of xanthan the amount of drug release from a PEG matrix was reduced to < 15% over 8?h dissolution. The presence of PVP increased the dissolution rate of nystatin due to the relative hydrophilicity of PVP. The presence of calcium ions induced a more rigid gel in the xanthan matrix as a result of interaction between the polymer and calcium ions. Xanthan can be used in potential mucoadhesive formulations containing nystatin to produce a controlled release of the drug and the outcomes of this work may provide a suitable strategy for matrix selection to provide more efficacious treatment alternatives for candidiasis and other disease processes for significant patient populations. |