首页 | 本学科首页   官方微博 | 高级检索  
检索        


Preparation and passive target of 5-fluorouracil solid lipid nanoparticles
Abstract:This work studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with 5-fluorouracil (5-FU). The goal was to design longer drug residence in vivo and passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects. Based on the optimized results of uniform design experiment, 5-FU-SLNs were prepared by multiple emulsion-ultrasonication (w/o/w). The SLNs were found to be relatively uniform in size (182.1?±?25.8?nm) with a negative zeta potential (?27.89?±?5.1 mV). The average drug entrapment efficiency and loading were 74% and 10%, respectively. Compared with the 5-FU solution (t1/2β, 0.593h; MRT, 0.358h) after intravenous injection to rats, the pharmacokinetic parameters of 5-FU-SLNs exhibited a longer retention time. (t1/2β, 4.0628h; MRT, 3.5321h). The area under curve of plasma concentration-time (AUC) of 5-FU-SLNs was 1.48 times greater than that of free drugs. The overall targeting efficiency (TEC) of the 5-FU-SLNs was enhanced from 13.25–20.45% in the lung and from 11.48–23.16% in kidney while the spleen distribution of 5-FU was significantly reduced as compared with that of the 5-FU solution. These results indicated that 5-FU-SLNs were promising passive targeting therapeutic agents for curing primary lung carcinoma.
Keywords:5-fluorouracil  solid lipid nanoparticles  entrapment efficacy  passive target  HPLC
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号