Design and validation of a dynamic cell‐culture system for bone biology research and exogenous tissue‐engineering applications |
| |
Authors: | Alexander C. Allori Edward H. Davidson Derek D. Reformat Alexander M. Sailon James Freeman Adam Vaughan David Wootton Elizabeth Clark John L. Ricci Stephen M. Warren |
| |
Affiliation: | 1. Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York, NY, USA;2. Division of Plastic, Maxillofacial & Oral Surgery, Duke University Hospital, Durham, NC, USA;3. Albert Nerken School of Engineering, Cooper Union for the Advancement of Science and Art, New York, NY, USA;4. Department of Chemical Engineering, Oklahoma State University, Oklahoma, OK, USA;5. Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA |
| |
Abstract: | Bone lacunocanalicular fluid flow ensures chemotransportation and provides a mechanical stimulus to cells. Traditional static cell‐culture methods are ill‐suited to study the intricacies of bone biology because they ignore the three‐dimensionality of meaningful cellular networks and the lacunocanalicular system; furthermore, reliance on diffusion alone for nutrient supply and waste product removal effectively limits scaffolds to 2–3 mm thickness. In this project, a flow‐perfusion system was custom‐designed to overcome these limitations: eight adaptable chambers housed cylindrical cell‐seeded scaffolds measuring 12 or 24 mm in diameter and 1–10 mm in thickness. The porous scaffolds were manufactured using a three‐dimensional (3D) periodic microprinting process and were composed of hydroxyapatite/tricalcium phosphate with variable thicknesses, strut sizes, pore sizes and structural configurations. A multi‐channel peristaltic pump drew medium from parallel reservoirs and perfused it through each scaffold at a programmable rate. Hermetically sealed valves permitted sampling or replacement of medium. A gas‐permeable membrane allowed for gas exchange. Tubing was selected to withstand continuous perfusion for > 2 months without leakage. Computational modelling was performed to assess the adequacy of oxygen supply and the range of fluid shear stress in the bioreactor–scaffold system, using 12 × 6 mm scaffolds, and these models suggested scaffold design modifications that improved oxygen delivery while enhancing physiological shear stress. This system may prove useful in studying complex 3D bone biology and in developing strategies for engineering thick 3D bone constructs. Copyright © 2013 John Wiley & Sons, Ltd. |
| |
Keywords: | tissue engineering bone lacunocanalicular system bioreactor cell culture scaffold fluid shear stress |
|
|