首页 | 本学科首页   官方微博 | 高级检索  
     


An ERP study of visual change detection: effects of magnitude of spatial frequency changes on the change-related posterior positivity.
Authors:Motohiro Kimura  Jun'ichi Katayama  Harumitsu Murohashi
Affiliation:Graduate School of Education, Hokkaido University, Kita-11 Nishi-7, Kita-ku, Sapporo 060-0811, Japan. m-kimura@edu.hokudai.ac.jp
Abstract:In event-related brain potential (ERP) studies using a visual S1-S2 matching task, change stimuli elicit a posterior positivity at around 100-200 ms. In the present study, we investigated the effects of magnitude of spatial frequency changes on change-related positivity. Each trial consisted of two sequentially presented stimuli (S1-S2), where S2 was either (1) the same as S1 (i.e., NO-change, p=.40), (2) different from S1 in spatial frequency only (SF-change, .40), (3) different in orientation only (OR-change, .10), or (4) different in both spatial frequency and orientation (BOTH-change, .10). Further, three magnitude conditions (Large, Medium, and Small) were used to examine the effect of the magnitude of the spatial frequency change. Participant's (N=12) task was to respond to S2 with a change in orientation (from vertical to horizontal, or from horizontal to vertical) regardless of the spatial frequency of the stimulus. Changes in the spatial frequency elicited change-related positivity at a latency range of about 120-180 ms, which was followed by a central negativity (N270) and a late positive component (LPC). The amplitude of the change-related positivity tends to be enhanced as the magnitude of the change is increased. These results support the notion that the change-related positivity reflects memory-based change detection in the human visual system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号