首页 | 本学科首页   官方微博 | 高级检索  
     

提升小波在诱发电位提取中的应用研究
引用本文:邹凌,陶彩林,陈树越,马正华. 提升小波在诱发电位提取中的应用研究[J]. 国际生物医学工程杂志, 2009, 32(6): 332-335. DOI: 10.3760/cma.j.issn.1673-4181.2009.06.004
作者姓名:邹凌  陶彩林  陈树越  马正华
作者单位:213164,常州,江苏工业学院信息科学与工程学院;100875,北京师范大学认知神经科学与学习国家重点实验室;江苏工业学院信息科学与工程学院,常州,213164
基金项目:志谢 感谢北京师范大学认知神经科学与学习国家重点实验室开放课题资助;北京师范大学应用实验心理北京市重点实验室开放研究基金课题资助;江苏省青蓝工程资助
摘    要:目的诱发电位信号的少次甚至单次提取一直是信号处理领域关注的热点问题之一,探讨如何利用提升小波有效提取诱发电位信号。方法首先基于仿真脑电数据,比较提升小波方法与多孔算法的去噪效果,选出具有最优小波基和分解层数的提升小波方法,再应用提升小波方法提取实际诱发电位信号。结果提升小波方法提取诱发电位信号波形特征明显,提高了信噪比,且其运算量只有传统方法的一半左右。结论提升小波的方法在诱发电位的应用中效果明显,有应用前景。

关 键 词:提升小波  多孔算法  诱发电位  信号去噪  提取

Application of lifting wavelet in the study of evoked potential extraction
Affiliation:ZOU Ling, TAO Cai-lin, CHEN Shu-yue,et al. (School of Information Science and Engineering, Jiangsu Polytechnic University,Changzhou 213164, China)
Abstract:Objective The less trials or even single trial extraction of evoked potentials(Eps) are always hot topics in signal processing. This paper discusses means to extract the Eps by lifting wavelet transform(LWT).Methods Simulated Eps were first de-noised by LWT and A'trous algorithms. The results from these two methods were compared and the LWT method with the optimum wavelet function and decomposed layer was chosen.The chosen LWT method was then applied to extract the real Eps. Results The waveform obtained by LWT method showed obvious feature and was close to the results of superposed average. The signal to noise ratio was enhanced and the processing time was only about half of that of traditional methods. Conclusion The application of LWT method in the extraction of evoked potential has obvious effects and shows a promising application foreground.
Keywords:Lifting wavelet transform  A'trous algorithm  Evoked potentials  Signal de-noising  Extraction
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号