首页 | 本学科首页   官方微博 | 高级检索  
     


Fast cochlear amplification with slow outer hair cells
Authors:Lu Timothy K  Zhak Serhii  Dallos Peter  Sarpeshkar Rahul
Affiliation:Analog VLSI and Biological Systems Group, Research Lab of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 38-276, Cambridge, MA 02139, USA.
Abstract:In mammalian cochleas, outer hair cells (OHCs) produce mechanical amplification over the entire audio-frequency range (up to 100 kHz). Under the 'somatic electro-motility' theory, mechano-electrical transduction modulates the OHC transmembrane potential, driving an OHC mechanical response which generates cycle-by-cycle mechanical amplification. Yet, though the OHC motor responds up to at least 70 kHz, the OHC membrane RC time constant (in vitro upper limit approximately 1000 Hz) reduces the potential driving the motor at high frequencies. Thus, the mechanism for high-frequency amplification with slow OHCs has been a two-decade-long mystery. Previous models fit to experimental data incorporated slow OHCs but did not explain how the OHC time constant limitation is overcome. Our key contribution is showing that negative feedback due to organ-of-Corti functional anatomy with adequate OHC gain significantly extends closed-loop system bandwidth and increases resonant gain. The OHC gain-bandwidth product, not just bandwidth, determines if high-frequency amplification is possible. Due to the cochlea's collective traveling-wave architecture, a single OHC's gain need not be great. OHC piezoelectricity increases the effectiveness of negative-feedback but is not essential for amplification. Thus, emergent closed-loop network dynamics differ significantly from open-loop component dynamics, a generally important principle in complex biological systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号