首页 | 本学科首页   官方微博 | 高级检索  
检索        


The relative role of PLCbeta and PI3Kgamma in platelet activation
Authors:Lian Lurong  Wang Yanfeng  Draznin Julia  Eslin Don  Bennett Joel S  Poncz Mortimer  Wu Dianqing  Abrams Charles S
Institution:Department of Medicine of University of Pennsylvania, 421 Curie Blvd, Biomedical Research Bldg II/III, Rm 912, Philadelphia, PA 19104, USA.
Abstract:Stimulation of platelet G protein-coupled receptors results in the cleavage of phosphatidylinositol 4,5-trisphosphate (PIP(2)) into inositol 1,4,5-trisphosphate and 1,2-diacylglycerol by phospholipase C (PLCbeta). It also results in the phosphorylation of PIP2 by the gamma isoform of phosphatidylinositol 3-kinase (PI3Kgamma) to synthesize phosphatidylinositol 3,4,5-trisphosphate. To understand the role of PIP2 in platelet signaling, we evaluated knock-out mice lacking 2 isoforms of PLCbeta (PLCbeta2 and PLCbeta3) or lacking the G(betagamma)-activated isoform of PI3K (PI3Kgamma). Both knock-out mice were unable to form stable thrombi in a carotid injury model. To provide a functional explanation, knock-out platelets were studied ex vivo. PLCbeta2/beta3-/- platelets failed to assemble filamentous actin, had defects in both secretion and mobilization of intracellular calcium, and were unable to form stable aggregates following low doses of agonists. Platelets lacking PI3Kgamma disaggregated following low-dose adenosine diphosphate (ADP) and had a mildly impaired ability to mobilize intracellular calcium. Yet, they exhibited essentially normal actin assembly and secretion. Remarkably, both PLCbeta2/beta3-/- and PI3Kgamma-/- platelets spread more slowly upon fibrinogen. These results suggest substantial redundancy in platelet signaling pathways. Nonetheless, the diminished ability of knock-out platelets to normally spread after adhesion and to form stable thrombi in vivo suggests that both PLCbeta2/beta3 and PI3Kgamma play vital roles in platelet cytoskeletal dynamics.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Blood》浏览原始摘要信息
点击此处可从《Blood》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号