Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood–spinal cord barrier |
| |
Authors: | Millicent Ford Rauch Sara Royce Hynes James Bertram y Redmond Rebecca Robinson Cicely Williams Hao Xu Joseph A. Madri Erin B. Lavik |
| |
Affiliation: | Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 311, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Department of Pathology, Yale University, New Haven, CT, USA |
| |
Abstract: | Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to the formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two-component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant + ECs or implant + NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a fourfold increase in functional vessels compared with the lesion control, implant alone or implant + NPCs groups and a twofold increase in functional vessels over the implant + ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for the formation of the blood–spinal cord barrier. No other groups have shown positive staining for the blood–spinal cord barrier in the injury epicenter. This work provides a novel method to induce angiogenesis following spinal cord injury and a foundation for studying its role in repair. |
| |
Keywords: | blood–spinal cord barrier hydrogel microvasculature poly(lactic-co-glycolic acid) rat scaffold |
|
|