首页 | 本学科首页   官方微博 | 高级检索  
     


Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes
Authors:Michael Lee Salmans  Shu-Miaw Chaw  Ching-Ping Lin  Arthur Chun-Chieh Shih  Yu-Wei Wu  R. Michael Mulligan
Affiliation:(1) Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA;(2) Biodiversity Research Center, Academia Sinica, 128 Academy Road, Section 2, Taipei, 115, Taiwan;(3) Institute of Information Science, Academia Sinica, 128 Academy Road, Section 2, Taipei, 115, Taiwan;(4) School of Informatics and Computing, Indiana University, Bloomington, IN 47405-7000, USA;
Abstract:Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNAs of the 39 protein-coding genes identified from the mitochondrial genome of Cycas taitungensis. The information profiles and RNA sequence context of C-to-U editing sites in the Cycas genome exhibit similarity in the immediate flanking nucleotides. Relative entropy analyses indicate that similar regions in the 5′ flanking 20 nucleotides have information content compared to angiosperm mitochondrial genomes. These results suggest that evolutionary constraints exist on the nucleotide sequences immediately adjacent to C-to-U editing sites, and similar regions are utilized in editing site recognition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号