首页 | 本学科首页   官方微博 | 高级检索  
检索        


Binocular interactions and disparity coding in area 21a of cat extrastriate visual cortex
Authors:Chun Wang  Bogdan Dreher
Institution:(1) Department of Anatomy and Histology (F13), The University of Sydney, 2006 Sydney, N.S.W., Australia
Abstract:We have examined, using both qualitative and quantitative techniques, binocular interactions of extracellularly recorded single neurons in the extrastriate cortical area 21a of anaesthetized and paralysed cats. Consistent with previous reports we have found that: (a) all area 21a neurons were orientation-selective, with about 65% of them preferring orientations within 30° of the vertical; and (b) over 75% of area 21a cells could be activated through either eye. Furthermore, a significant minority (4 cells; about 10%) of a subpopulation of 39 neurons in which binocular interactions were examined quantitatively, were ldquoobligatory binocular neuronsrdquo, that is, they responded very weakly, if at all, to the monocular stimuli presented through either eye but responded vigorously to simultaneous stimulation through both eyes. Almost 70% (27/39) of neurons tested quantitatively for binocular interaction have shown significant modulation (over 50%) of their peak responses in relation to binocular positional retinal disparities. The majority of neurons sensitive to binocular positional disparities resembled either ldquotuned excitatoryrdquo (22 cells; 56.5% of the sample) or ldquotuned inhibitoryrdquo (2 cells; 5% of our sample) cells. In particular, they gave, respectively, maximal or minimal responses to optimally oriented, moving photic stimuli when the receptive fields plotted through each eye completely or partially overlapped. Although neurons recorded in area 21a have relatively large receptive fields (mean width 3.3±1.1°; range 2.0–5.6°), the mean width of the disparity tuning curve (2.8±1.0°; range 1.3–4.8°) for our sample of area 21a neurons was similar to those of neurons with significantly smaller receptive fields, recorded in areas 17 and 18 of cat's primary visual cortex. We conclude that area 21a of the cat, like areas 17 and 18 of primary visual cortex, is likely to play an important role in binocular depth discrimination and might constitute a ldquohigher orderrdquo area for stereoscopic binocular vision.
Keywords:Binocular positional disparities  Orientation selectivity  Binocular summation and facilitation  Depth discrimination  Cat
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号