首页 | 本学科首页   官方微博 | 高级检索  
检索        


Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer
Authors:Jordi Bonaventura  Gemma Navarro  Verònica Casadó-Anguera  Karima Azdad  William Rea  Estefanía Moreno  Marc Brugarolas  Josefa Mallol  Enric I Canela  Carme Lluís  Antoni Cortés  Nora D Volkow  Serge N Schiffmann  Sergi Ferré  Vicent Casadó
Abstract:Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.Most evidence indicates that G protein-coupled receptors (GPCRs) form homodimers and heteromers. Homodimers seem to be a predominant species, and oligomeric entities can be viewed as multiples of dimers (1). It has been proposed that GPCR heteromers are constituted mainly by heteromers of homodimers (1, 2). Allosteric mechanisms determine a multiplicity of unique pharmacologic properties of GPCR homodimers and heteromers (1, 3). First, binding of a ligand to one of the receptors in the heteromer can modify the affinity of ligands for the other receptor (1, 3, 4). The most widely reproduced allosteric modulation of ligand-binding properties in a GPCR heteromer is the ability of adenosine A2A receptor (A2AR) agonists to decrease the affinity of dopamine D2 receptor (D2R) agonists in the A2AR-D2R heteromer (5). A2AR-D2R heteromers have been revealed both in transfected cells (6, 7), striatal neurons in culture (6, 8) and in situ, in mammalian striatum (9, 10), where they play an important role in the modulation of GABAergic striatopallidal neuronal function (9, 11).In addition to ligand-binding properties, unique properties for each GPCR oligomer emerge in relation to the varying intrinsic efficacy of ligands for different signaling pathways (13). Intrinsic efficacy refers to the power of the agonist to induce a functional response, independent of its affinity for the receptor. Thus, allosteric modulation of an agonist can potentially involve changes in affinity and/or intrinsic efficacy (1, 3). This principle can be observed in the A2AR-D2R heteromer, where a decrease in D2R agonist affinity cannot alone explain the ability of an A2AR agonist to abolish the decreased excitability of GABAergic striatopallidal neurons induced by high concentration of a D2R agonist (9), which should overcome the decrease in affinity. Furthermore, a differential effect of allosteric modulations of different agonist-mediated signaling responses (i.e., functional selectivity) can occur within GPCR heteromers (1, 2, 8). Again, the A2AR-D2R heteromer provides a valuable example. A recent study has shown that different levels of intracellular Ca2+ exert different modulations of A2AR-D2R heteromer signaling (8). This depends on the ability of low and high Ca2+ to promote a selective interaction of the heteromer with different Ca2+-binding proteins, which differentially modulate allosteric interactions in the heteromer (8).It has been hypothesized that the allosteric interactions between A2AR and D2R agonists within the A2AR-D2R heteromer provide a mechanism responsible not only for the depressant effects of A2AR agonists, but also for the psychostimulant effects of adenosine A2AR antagonists and the nonselective adenosine receptor antagonist caffeine (9, 11, 12), with implications for several neuropsychiatric disorders (13). In fact, the same mechanism has provided the rationale for the use of A2AR antagonists in patients with Parkinson’s disease (13, 14). The initial aim of the present study was to study in detail the ability of caffeine to counteract allosteric modulations between A2AR and D2R agonists (affinity and intrinsic efficacy) within the A2AR-D2R heteromer. Unexpectedly, when performing control radioligand-binding experiments, not only an A2AR agonist, but also caffeine, significantly decreased D2R agonist binding. However, when coadministered, the A2AR agonist and caffeine co-counteracted their ability to modulate D2R agonist binding. By exploring the molecular mechanisms behind these apparent inconsistencies, the present study provides new insight into the quaternary structure and function of A2AR-D2R heteromers.
Keywords:adenosine A2A receptor  dopamine D2 receptor  caffeine  GPCR heteromers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号