首页 | 本学科首页   官方微博 | 高级检索  
     


Diethyldithiocarbamate-induced cytotoxicity and apoptosis in leukemia cell lines
Authors:Kanno Syu-ichi  Matsukawa Emi  Miura Ai  Shouji Ai  Asou Keiko  Ishikawa Masaaki
Affiliation:Department of Pharmacology and Toxicology, Cancer Research Institute, Tohoku Pharmaceutical University, Sendai, Japan. syu-kan@tohoku-pharm.ac.jp
Abstract:Diethyldithiocarbamate (DDTC) has been shown to induce cytotoxicity in several different systems. We examined whether the DDTC-induced cytotoxicity was via apoptosis, or in relation to intracellular glutathione (GSH) in various murine and human leukemia cell lines. The cells most sensitive to DDTC-induced cytotoxicity were P388 lymphoid neoplasma cells and NALM-6, a B cell line of acute lymphocytic leukemia (ALL). The next level of susceptible cells included J774.1, having a macrophage function, HL-60 premyelocytic leukemia cells, MOLT-4, an acute lymphoblastic leukemia cell, and Jurkat, a T-cell leukemia. U937 (expressing many monocyte-like characteristics), K562 erythroleukemia and K562/DXR (a multidrug-resistant clone derived from K562) were almost unaffected by DDTC. P388 was also highly susceptible to H(2)O(2), a most useful exogenous reactive oxygen species generator, and was lower in intracellular total GSH content than other leukemia cells. DDTC-induced cytotoxicity was closely related to intracellular GSH, but the level of cellular GSH did not always correlate with H(2)O(2)-induced cytotoxicity in this experiment. K562 had a higher intracellular total GSH content and showed lower susceptibility to DDTC and H(2)O(2), but with the combination of DDTC and DL-buthionine-(S,R)-sulfoximine (BSO), cytotoxicity increased significantly. The ratio of GSH/GSSG in P388 was reduced by DDTC or H(2)O(2). H(2)O(2)-induced cytotoxicity was completely blocked by catalase (CAT), while it was enhanced by superoxide dismutase (SOD). CAT or SOD did not affect DDTC-induced cytotoxicity. N-Acetylcysteine (NAC: 1 mM), a vanguard substance of GSH, and aurintricarboxylic acid (ATA: 100 microM), an endonuclease inhibitor, ameliorated DDTC-induced cytotoxicity and apoptosis. In conclusion, we suggest that DDTC-induced cytotoxicity was via an oxidative shift in the intracellular redox state, and accompanied the activation of endonuclease through apoptosis in leukemia cell lines.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号