首页 | 本学科首页   官方微博 | 高级检索  
     


Differential regulation of Ca2+ influx by fMLP and PAF in human neutrophils: possible involvement of store-operated Ca2+ channel
Authors:Chen L W  Shen A Y  Chen J S  Wu S N
Affiliation:Department of Surgery, Veterans General Hospital-Kaohsiung, Taiwan.
Abstract:Calcium (Ca2+) influx into human polymorphonuclear cells (PMNs) in response to N-formyl-Met-Leu-Phe (fMLP) and platelet-activating factor (PAF) stimulation was studied. Whole blood was taken by venous puncture from healthy human volunteers. PMNs were isolated, diluted, and incubated with 2 microM fura-2 AM. The cytosolic free calcium concentration, [Ca2+]i, in human neutrophils was determined by microfluorometry. We found that the net area under the fMLP- or PAF-induced [Ca2+]i rise curve in Ca2+-free medium decreased to 75% or 30% of the area under the curve in Ca2+ medium. Treatment of PMNs with phorbol myristate acetate (PMA), a protein kinase C activator, completely abolished the intracellular Ca2+ level stimulated by PAF, but not the intracellular Ca2+ level stimulated by fMLP. Treatment of PMNs with PAF did not abolish the intracellular Ca2+ level elevation stimulated by fMLP. In addition, treatment of PMNs with fMLP did not abolish intracellular Ca2+ level elevation stimulated by PAF. Loperamide, a positive modulator for store-operated calcium (SOC) channels, elicited an increase in intracellular calcium after the activation of SOC channels stimulated by fMLP or PAF. After the addition of guanosine 3',5'-cyclic monophosphate, N2,2'-O-Dibutyryl-, sodium salt (db-cGMP), the initial increase of PAF- or fMLP-induced PMNs intracellular Ca2+ fluorescences was well preserved, but the slope and the peak height of fluorescence curves declined compared with the curves without db-cGMP. In conclusion, we found that PAF and fMLP regulate the Ca2+ influx of PMNs in different ways. Most of the PAF-induced [Ca2+]i rise resulted from Ca2+ influx, and most of the fMLP-induced [Ca2+]i elevation resulted from intracellular stores release. The initial mobilization of intracellular Ca2+ stores in PAF-stimulated signals is mediated by protein kinase C (PKC) phosphorylation, but not in fMLP-stimulated route. SOC channels are present and important in the fMLP- or PAF-induced PMNs Ca2+ influx. There was no apparent cross-regulation between PAF- and fMLP-stimulated intracellular Ca2+ influx.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号