首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of adsorbed proteins and surface chemistry on foreign body giant cell formation, tumor necrosis factor alpha release and procoagulant activity of monocytes
Authors:Shen Mingchao  Garcia Iris  Maier Ronald V  Horbett Thomas A
Institution:Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
Abstract:The adhesion and activation of monocytes and macrophages are thought to affect the foreign body response to implanted medical devices. However, these cells interact with devices indirectly, because of the prior adsorption of proteins. Therefore, we preadsorbed several "model" biomaterial surfaces with proteins and then measured foreign body giant cell (FBGC) formation, tumor necrosis factor alpha (TNFalpha) release, and procoagulant activity. The model surfaces were tissue culture polystyrene (TCPS), untreated polystyrene (PS), and Primaria, whereas the proteins used were albumin, fibronectin, fibrinogen, and immunoglobulin. FBGC formation, TNFalpha release, and procoagulant activity of monocytes were the highest for surfaces preadsorbed with IgG. FBGC formation was lower on surfaces with adsorbed fibrinogen and fibronectin than on uncoated surfaces. TNFalpha release and procoagulant activity of monocytes were similar on surface adsorbed with fibrinogen, fibronectin, or albumin. Monocyte activation was also affected by the surface chemistry of the substrates, because FBGC formation was the highest on PS and the lowest on TCPS. Monocyte procoagulant activity was the highest on Primaria. Adsorbed proteins and surface chemistry were found to have strong effects on FBGC formation, monocyte TNFalpha release, and procoagulant activity in vitro, providing support for the idea that these same variables could affect macrophage-mediated foreign body response to biomaterials in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号