首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of the 5-HT(1A) receptor-mediated inwardly rectifying K(+) current by dextromethorphan in rat dorsal raphe neurones
Authors:Ishibashi H  Kuwano K  Takahama K
Affiliation:Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, 862-0973, Kumamoto, Japan.
Abstract:The effect of dextromethorphan (DM) on the inwardly rectifying K(+) currents mediated by 5-HT(1A) receptors in acutely dissociated dorsal raphe (DR) neurones of rats was studied using nystatin-perforated patch and conventional whole-cell patch recording configurations under voltage-clamp conditions. DM rapidly and reversibly inhibited the K(+) currents induced by 10(-7) M 5-HT in a concentration-dependent manner with a half-maximum inhibitory concentration of 1.43 x 10(-5) M. The inhibitory effect of DM was neither voltage- nor use-dependent. DM caused a suppression of the maximum response of the 5-HT concentration-response curve, thus suggesting a non-competitive type of inhibition. In neurones perfused intracellularly with a pipette-solution containing the nonhydrolyzable GTP analog GTPgammaS, 5-HT activated K(+) currents in an irreversible manner. DM suppressed the current irreversibly activated by intracellular GTPgammaS even in the absence of the agonist. DM also inhibited the inwardly rectifying K(+) currents regulated by alpha(2)-adrenoceptors in freshly isolated rat locus coeruleus neurones. These results suggest that DM may inhibit the G-protein coupled inwardly rectifying K(+) channels, but not the neurotransmitter receptors, in the central nervous system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号