首页 | 本学科首页   官方微博 | 高级检索  
     


Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex.
Authors:M P Witter  D G Amaral
Affiliation:Department of Anatomy and Embryology, Vrije Universiteit, Amsterdam, The Netherlands.
Abstract:The topographic and laminar organization of entorhinal projections to the dentate gyrus, hippocampus, and subicular complex was investigated in the Macaca fascicularis monkey. Injections of 3H-amino acids were placed at various positions within the entorhinal cortex and the distribution of anterogradely labeled fibers and terminals within the other fields of the hippocampal formation was determined. Injections of the retrograde tracers Fast blue, Diamidino yellow, and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) were also placed into the dentate gyrus, hippocampus, and subicular complex, and the distribution of retrogradely labeled cells in the entorhinal cortex was plotted using a computer-aided digitizing system. The entorhinal cortex gave rise to projections that terminated in the subiculum, in the CA1, CA2, and CA3 fields of the hippocampus, and in the dentate gyrus. Projections to the dentate gyrus, and fields CA3 and CA2 of the hippocampus, originated preferentially in layers II and VI of the entorhinal cortex whereas projections to CA1 and to the subiculum originated mainly in layers III and V. Anterograde tracing experiments demonstrated that all regions of the entorhinal cortex project to the outer two-thirds of the molecular layer of the dentate gyrus and to much of the radial extent of the stratum lacunosum-moleculare of CA3 and CA2. While the terminal distributions of entorhinal projections to the dentate gyrus, CA3, and CA2 were not as clearly laminated as in the rat, projections from rostral levels of the entorhinal cortex preferentially innervated the outer portion of the molecular layer and stratum lacunosum-moleculare, whereas more caudal levels of the entorhinal cortex projected relatively more heavily to the deeper portions of the entorhinal terminal zones. The entorhinal projection to the CA1 field of the hippocampus and to the subiculum followed a transverse rather than radial gradient of distribution. Rostral levels of the entorhinal cortex terminated most heavily at the border of CA1 and the subiculum. More caudal levels of the entorhinal cortex projected to progressively more distal portions of the subiculum (towards the presubiculum) and more proximal portions of CA1 (towards CA2). Lateral portions of the entorhinal cortex projected to caudal levels of the recipient fields and more medial parts of the entorhinal cortex projected to progressively more rostral portions of the fields.
Keywords:perforant path  connections  temporo-ammonic path
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号