首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo evidence for both lipolytic and nonlipolytic function of hepatic lipase in the metabolism of HDL
Authors:Dugi K A  Amar M J  Haudenschild C C  Shamburek R D  Bensadoun A  Hoyt R F  Fruchart-Najib J  Madj Z  Brewer H B  Santamarina-Fojo S
Affiliation:Molecular Disease Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA.
Abstract:To investigate the in vivo role that hepatic lipase (HL) plays in HDL metabolism independently of its lipolytic function, recombinant adenovirus (rAdV) expressing native HL, catalytically inactive HL (HL-145G), and luciferase control was injected in HL-deficient mice. At day 4 after infusion of 2 x 10(8) plaque-forming units of rHL-AdV and rHL-145G-AdV, similar plasma concentrations were detected in postheparin plasma (HL=8.4+/-0.8 microg/mL and HL-145G=8.3+/-0.8 microg/mL). Mice expressing HL had significant reductions of cholesterol (-76%), phospholipids (PL; -68%), HDL cholesterol (-79%), apolipoprotein (apo) A-I (-45%), and apoA-II (-59%; P<0.05 for all), whereas mice expressing HL-145G decreased their cholesterol (-49%), PL (-40%), HDL cholesterol (-42%), and apoA-II (-89%; P<0.005 for all) but had no changes in apoA-I. The plasma kinetics of (125)I-labeled apoA-I HDL, (131)I-labeled apoA-II HDL, and [(3)H]cholesteryl ester (CE) HDL revealed that compared with mice expressing luciferase control (fractional catabolic rate [FCR] in d(-1): apoA-I HDL=1.3+/-0.1; apoA-II HDL=2.1+/-0; CE HDL=4.1+/-0.7), both HL and HL-145G enhanced the plasma clearance of CEs and apoA-II present in HDL (apoA-II HDL=5.6+/-0.5 and 4.4+/-0.2; CE HDL=9.3+/-0. 0 and 8.3+/-1.1, respectively), whereas the clearance of apoA-I HDL was enhanced in mice expressing HL (FCR=4.6+/-0.3) but not HL-145G (FCR=1.4+/-0.4). These combined findings demonstrate that both lipolytic and nonlipolytic functions of HL are important for HDL metabolism in vivo. Our study provides, for the first time, in vivo evidence for a role of HL in HDL metabolism independent of lipolysis and provides new insights into the role of HL in facilitating distinct metabolic pathways involved in the catabolism of apoA-I- versus apoA-II-containing HDL.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号