首页 | 本学科首页   官方微博 | 高级检索  
     


Antifungal Activity of Endosequence Root Repair Material and Mineral Trioxide Aggregate
Authors:Fahd Alsalleeh  Nicole Chung  Lane Stephenson
Affiliation: Department of Surgical Specialties, University of Nebraska Medical Center, College of Dentistry, Lincoln, Nebraska; Restorative Department, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
Abstract:

Introduction

The purpose of this study was to investigate the antifungal activity of Endosequence Root Repair Material (ERRM; Brasseler USA, Savannah, GA) as compared with mineral trioxide aggregate (MTA) using Candida albicans.

Methods

All materials were packed into sterilized intravenous tubing to obtain standardized samples and allowed to set for 3 or 24 hours and then exposed to a suspension of C. albicans for incubations of 24 or 48 hours. To analyze the mechanisms of the material's antifungal activity, additional samples of each test material were prepared in the same manner and allowed to set for 24 hours; these were then incubated in a culture medium for 24 hours. The pH of each conditioned media was measured before transferring to wells containing C. albicans. The development of biofilm was analyzed after 24 and 48 hours with 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-([phenyl amino] carbonyl)-2H-tetrazolium hydroxide reduction assay.

Results

Materials in both experimental groups significantly limited biofilm formation at each interval (ie, 24 and 48 hours). After incubating for a 24-hour period in the presence of C. albicans, ERRM in both experimental groups showed a reduction in biofilm formation that was statistically significant in comparison with MTA. However, when set for 24 hours and incubated for 48 hours, gray MTA and white MTA showed a more substantial reduction in biofilm formation than comparable samples of ERRM. Cultured media conditioned with test materials showed statistically significant antifungal biofilm activity after 48 hours.

Conclusions

All materials tested have comparable antifungal biofilm activity. It appeared that changing the environment, such as the pH, contributed to this activity.
Keywords:C. albicans   Endosequence Root Repair Material   fungal biofilm   mineral trioxide aggregate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号