首页 | 本学科首页   官方微博 | 高级检索  
检索        


Extension of the TDCR model to compute counting efficiencies for radionuclides with complex decay schemes
Institution:1. Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany;2. Laboratoire National Henri Becquerel, CEA-LNHB, CE-Saclay, 91191 Gif sur Yvette Cedex, France;3. C/Voluntarios Catalanes, 62, 28039 Madrid, Spain;4. Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany;5. Radiochemie München (RCM), Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany;6. Naturwissenschaftlich-Technische Akademie (NTA), Seidenstr. 12-35, D-88316 Isny, Germany;1. European Commission, Joint Research Centre, Radionuclide Metrology Sector, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, BELGIUM;2. ENEA, National Institue Ionizing Radiation Metrology, C.R. Casaccia, Via Anguillarese, 301, 00123 S. Maria di Galeria, Rome, ITALY;3. Federal Office of Metrology and Surveying, Ionising Radiation and Radioactivity, Arltgasse 35, 1160, Vienna, AUSTRIA;1. Center for Space Science and Astrophysics, Stanford University, Stanford, CA 94305, USA;2. Department of Physics, Purdue University, West Lafayette, IN 47907, USA;3. Edwards Air Force Base, CA 93524, USA;4. Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA;5. Department of Physics, United States Air Force Academy, Colorado Springs, CO 80920, USA;6. NASA/Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA;1. Bureau International des Poids et Mesures (BIPM), Sèvres, France;2. D.I. Mendeleyev Institute for Metrology (VNIIM), Russian Federation;3. National Physical Laboratory (NPL), United Kingdom;4. Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile-Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (ENEA-INMRI), Italy;1. National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW United Kingdom;2. University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
Abstract:The triple-to-double coincidence ratio (TDCR) method is frequently used to measure the activity of radionuclides decaying by pure β emission or electron capture (EC). Some radionuclides with more complex decays have also been studied, but accurate calculations of decay branches which are accompanied by many coincident γ transitions have not yet been investigated.This paper describes recent extensions of the model to make efficiency computations for more complex decay schemes possible. In particular, the MICELLE2 program that applies a stochastic approach of the free parameter model was extended. With an improved code, efficiencies for β, β+ and EC branches with up to seven coincident γ transitions can be calculated. Moreover, a new parametrization for the computation of electron stopping powers has been implemented to compute the ionization quenching function of 10 commercial scintillation cocktails.In order to demonstrate the capabilities of the TDCR method, the following radionuclides are discussed: 166mHo (complex β/γ), 59Fe (complex β/γ), 64Cu (β, β+, EC and EC/γ) and 229Th in equilibrium with its progenies (decay chain with many α, β and complex β/γ transitions).
Keywords:Activity standardization  Radionuclides with complex decay scheme  Free parameter model  TDCR  Ionization quenching
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号