首页 | 本学科首页   官方微博 | 高级检索  
     


9Be(d,n)10B-based neutron sources for BNCT
Affiliation:1. Gerencia de Investigación y Aplicaciones, CNEA. Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina;2. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín. M. de Irigoyen 3100, 1650 San Martín, Buenos Aires, Argentina;3. CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires, Argentina;1. Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland;2. Institute of Medical Biology, Polish Academy of Sciences, Screening Laboratory, 106 Lodowa St., Lodz 93-232, Poland;1. Fushimi Pharmaceutical Co., Ltd., 1676 Nakazu-cho, Marugame, Kagawa 763-8605, Japan;2. Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-cho, Shobara, Hiroshima 727-0023, Japan;3. Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan;4. Porphyrin Lab., 1-2-35 Tsushimanishizaka, Kita-ku, Okayama 700-0086, Japan;1. Fushimi Pharmaceutical Co., Ltd, 1676 Nakazu-cho, Marugame, Kagawa 763-8605, Japan;2. Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-cho, Shobara, Hiroshima 727-0023, Japan;3. Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan;4. Porphyrin Lab., 1-2-35 Tsushimanishizaka, Kita-ku, Okayama 700-0086, Japan;1. Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab, 7/9, Saint Petersburg 199034, Russian Federation;2. Center for Optical and Laser Materials Research, Saint Petersburg State University, Ulianovskaya, 5, Saint-Petersburg 198504, Russian Federation;3. Center for X-ray Diffraction Studies, Saint Petersburg State University, Universitetskii Pr., 26, Saint Petersburg 198504, Russian Federation;4. N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119991, Russian Federation;1. Reactor Physics Department, NRC, Atomic Energy Authority, Cairo, Egypt;2. Physics Department, Faculty of Science, Zagazig University, Egypt;1. Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran;2. Department of Physics, K.N.T University, Tehran, Iran
Abstract:In the frame of accelerator-based BNCT, the 9Be(d,n)10B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40 Gy-Eq, with a maximum value of 51 Gy-Eq at a depth of about 2.7 cm, in a 60 min treatment.The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized 7Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol.
Keywords:Accelerator-based BNCT  Monte-Carlo-simulations  Beam-Shaping-Assembly  Brain tumor treatment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号