Alterations of 45Ca accumulation and [3H]inositol 1,4,5-trisphosphate binding using autoradiography in the exo-focal postischemic brain areas of the rat. |
| |
Authors: | H Nagasawa K Kogure |
| |
Affiliation: | Department of Neurology, Tohoku University School of Medicine, Sendai, Japan. |
| |
Abstract: | We studied the alterations of calcium accumulation and intracellular signal transduction using autoradiography of the second messenger system in order to clarify the mechanisms of the delayed neuronal changes in the remote areas of rat brain after transient focal ischemia. Chronological changes of 45Ca accumulation and [3H]inositol 1,4,5-trisphosphate (IP3) binding sites were determined after 90 min of right middle cerebral artery (MCA) occlusion and after such occlusion followed by different periods of recirculation. After the ischemic insult, 45Ca accumulation extended to the lateral segment of the caudate putamen and to the cerebral cortex, both supplied by the occluded MCA. One day after the ischemia, [3H]IP3 binding sites decreased significantly compared with the control values in these ischemic areas. Moreover, 3 days after the ischemia, 45Ca accumulation was first detected in the ipsilateral thalamus and the substantia nigra, which lay outside the ischemic areas. In the substantia nigra, a significant decrease of [3H]IP3 binding sites and concurrent 45Ca accumulation were observed. In the thalamus, however, there was not alteration until 1 week after the ischemia, and then [3H]IP3 binding sites increased significantly 2 weeks (P less than 0.05) and 4 weeks (P less than 0.01) after the ischemia. Based on the present study, we speculate that different mechanisms associated with signal transduction systems may be responsible for exo-focal postischemic delayed neuronal changes in the thalamus and the substantia nigra. The increase of [3H]IP3 binding sites of the thalamus in the chronic stage may be new evidence of plasticity related to neurotransmission. |
| |
Keywords: | inositol 1,4,5-trisphosphate calcium accumulation focal brain ischemia postischemic neuronal damage second messenger system |
|
|