首页 | 本学科首页   官方微博 | 高级检索  
     


Distinctive higher-order chromatin structure at mammalian centromeres
Authors:Gilbert N  Allan J
Affiliation:Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, Kings Buildings, West Mains Road, Edinburgh, EH9 3JR, United Kingdom.
Abstract:The structure of the higher-order chromatin fiber has not been defined in detail. We have used a novel approach based on sucrose gradient centrifugation to compare the conformation of centromeric satellite DNA-containing higher-order chromatin fibers with bulk chromatin fibers obtained from the same mouse fibroblast cells. Our data show that chromatin fibers derived from the centromeric domain of a chromosome exist in a more condensed structure than bulk chromatin whereas pericentromeric chromatin fibers have an intermediate conformation. From the standpoint of current models, our data are interpreted to suggest that satellite chromatin adopts a regular helical conformation compatible with the canonical 30-nm chromatin fiber whereas bulk chromatin fibers appear less regularly folded and are perhaps intermittently interrupted by deformations. This distinctive conformation of the higher-order chromatin fiber in the centromeric domain of the mammalian chromosome could play a role in the formation of heterochromatin and in the determination of centromere identity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号