首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature and germ cell regulation of Leydig cell proliferation stimulated by Sertoli cell-secreted mitogenic factor: a possible role in cryptorchidism
Authors:N. Wu  and Dr  E. P. Murono PhD
Affiliation:Research Service, Dorn Veterans' Hospital and Department of Medicine and Physiology, University of South Carolina School of Medicine, Columbia, USA
Abstract:Summary. Local control of Leydig cell morphology and function by seminiferous tubules was suggested in previous in vivo studies, especially those that used experimental cryptorchid rat testis as a model. These studies reported changes in morphology, increases in cell number and mitotic index and decreases in testosterone formation and luteinizing hormone/human chorionic gonadotropin receptor levels of Leydig cells. However, little is known about how these changes are mediated. We recently observed that a novel Sertoli cell-secreted mitogenic factor stimulated proliferation, decreased testosterone formation and luteinizing hormone/human chorionic gonadotropin receptor levels, and dramatically altered the morphology of Leydig cells in culture. In the present studies, we demonstrate that an increase in coculture temperature from 33 to 37 °C increased [3H]-thymidine incorporation (5.6- vs. 19.2-fold) and labelling index (4.3% vs. 15.8%), and accelerated proliferation (2.1- vs. 3.9-fold) of cultured immature Leydig cells. In addition, testosterone formation and luteinizing hormone/human chorionic gonadotropin receptor levels of Leydig cells cocultured with Sertoli cells were further decreased following a 4°C increase in coculture temperature. This elevation in culture temperature increased both the secretion of this factor by Sertoli cells and responsiveness of Leydig cells to this factor. In addition, the presence of germ cells, especially pachytene spermatocytes, inhibited the secretion of the mitogenic factor by Sertoli cells. These temperature- and germ cell-associated effects mimicked the morphological and functional changes of Leydig cells reported following experimental cryptorchidism. These observations suggest a possible role of this Sertoli cell-secreted mitogenic factor in explaining Leydig cell changes following experimental cryptorchidism.
Keywords:Leydig/Sertoli cell coculture    mitogen    proliferation    steroidogenesis    temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号