Preservation with 8-bromo-cyclic GMP improves pulmonary function after prolonged ischemia |
| |
Affiliation: | 1. Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia, USA;1. Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi''an, 710032, China;2. Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China;3. Laboratory of Critical Care Medicine, Department of Anesthesiology and Intensive Care, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk, 634012, Russian Federation;1. Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA;2. Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA;3. Electronics Engineering Division, Aeronautics Institute of Technology, Sao Paulo, Brazil |
| |
Abstract: | Background. Cyclic guanosine monophosphate (cGMP) is a potent second messenger for the nitric oxide pathway in the pulmonary vasculature. Increased cytosolic cGMP levels elicit pulmonary vasodilatation resulting in decreased pulmonary vascular resistance and maximized pulmonary function after ischemia-reperfusion injury. We hypothesized that the addition of a membrane-permeable cGMP analogue (8-bromo-cGMP) to a Euro-Collins (EC) preservation solution would ameliorate pulmonary reperfusion injury better than prostaglandin E1 injection alone after prolonged hypothermic ischemia.Methods. All lungs from New Zealand White rabbits (weight, 3 to 3.5 kg) were harvested en bloc, flushed with EC solution, and reperfused with whole blood for 30 minutes. Group 1 lungs (immediate control) were immediately reperfused. Group 2 lungs (control) were stored inflated at 4°C for 18 hours before reperfusion. Groups 3 and 4 lungs were flushed with EC solution containing 200 μmol/L 8-bromo-cGMP and stored at 4°C for 18 and 30 hours, respectively. Fresh, nonrecirculated venous blood was used to determine single-pass pulmonary venous–arterial oxygen gradients at 10-minute intervals. Assays for cGMP, cyclic adenosine monophosphate, nitric oxide synthase activity, and myeloperoxidase were performed on all lung tissue samples. Wet to dry weight ratios were determined after 2 weeks of passive desiccation.Results. Oxygenation (venous-arterial oxygen gradient), pulmonary artery pressure, pulmonary vascular resistance, and edema formation were significantly improved in groups 3 and 4 (addition of 8-bromo-cGMP to EC plus 18 or 30 hours of hypothermic ischemia). Hypothermic storage (groups 2, 3, and 4) decreased both nitric oxide synthase activity and myeloperoxidase levels compared with immediate reperfusion (group 1).Conclusions. These results suggest that the addition of a membrane-permeable cGMP analogue to an EC pulmonary flush solution improves pulmonary function after prolonged storage compared with EC and prostaglandin (E1) preservation alone. The finding of myeloperoxidase reduced levels after hypothermic storage and subsequent reperfusion may suggest a more important role for pulmonary hemodynamic control in mitigating pulmonary reperfusion injury. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|