首页 | 本学科首页   官方微博 | 高级检索  
     


Trimmed estimators for robust averaging of event-related potentials
Authors:Leonowicz Zbigniew  Karvanen Juha  Shishkin Sergei L
Affiliation:Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Saitama 351-0198, Japan. zbigniew.leonowicz@pwr.wroc.pl
Abstract:Averaging (in statistical terms, estimation of the location of data) is one of the most commonly used procedures in neuroscience and the basic procedure for obtaining event-related potentials (ERP). Only the arithmetic mean is routinely used in the current practice of ERP research, though its sensitivity to outliers is well-known. Weighted averaging is sometimes used as a more robust procedure, however, it can be not sufficiently appropriate when the signal is nonstationary within a trial. Trimmed estimators provide an alternative way to average data. In this paper, a number of such location estimators (trimmed mean, Winsorized mean and recently introduced trimmed L-mean) are reviewed, as well as arithmetic mean and median. A new robust location estimator tanh, which allows the data-dependent optimization, is proposed for averaging of small number of trials. The possibilities to improve signal-to-noise ratio (SNR) of averaged waveforms using trimmed location estimators are demonstrated for epochs randomly drawn from a set of real auditory evoked potential data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号