首页 | 本学科首页   官方微博 | 高级检索  
     


Serotonergic inhibition of action potential evoked calcium transients in NOS-containing mesopontine cholinergic neurons
Authors:Leonard C S  Rao S R  Inoue T
Affiliation:Department of Physiology, New York Medical College, Valhalla, New York 10595, USA. chris_leonard@nymc.edu
Abstract:Nitric oxide synthase (NOS)-containing mesopontine cholinergic (MPCh) neurons of the laterodorsal tegmental nucleus (LDT) are hypothesized to drive the behavioral states of waking and REM sleep through a tonic increase in firing rate which begins before and is maintained throughout these states. In principle, increased firing could elevate intracellular calcium levels and regulate numerous cellular processes including excitability, gene expression, and the activity of neuronal NOS in a state-dependent manner. We investigated whether repetitive firing, evoked by current injection and N-methyl-D-aspartate (NMDA) receptor activation, produces somatic and proximal dendritic [Ca(2+)](i) transients and whether these transients are modulated by serotonin, a transmitter thought to play a critical role in regulating the state-dependent firing of MPCh neurons. [Ca(2+)](i) was monitored optically from neurons filled with Ca(2+) indicators in guinea pig brain slices while measuring membrane potential with sharp microelectrodes or patch pipettes. Neither hyperpolarizing current steps nor subthreshold depolarizing steps altered [Ca(2+)](i). In contrast, suprathreshold currents caused large and rapid increases in [Ca(2+)](i) that were related to firing rate. TTX (1 microM) strongly attenuated this relation. Addition of tetraethylammonium (TEA, 20 mM), which resulted in Ca(2+) spiking on depolarization, restored the change in [Ca(2+)](i) to pre-TTX levels. Suprathreshold doses of NMDA also produced increases in [Ca(2+)](i) that were reduced by up to 60% by TTX. Application of 5-HT, which hyperpolarized LDT neurons without detectable changes in [Ca(2+)](i), suppressed both current- and NMDA-evoked increases in [Ca(2+)](i) by reducing the number of evoked spikes and by inhibiting spike-evoked Ca(2+) transients by approximately 40% in the soma and proximal dendrites. This inhibition was accompanied by a subtle increase in the spike repolarization rate and a decrease in spike width, as expected for inhibition of high-threshold Ca(2+) currents in these neurons. NADPH-diaphorase histochemistry confirmed that recorded cells were NOS-containing. These findings indicate the prime role of action potentials in elevating [Ca(2+)](i) in NOS-containing MPCh neurons. Moreover, they demonstrate that serotonin can inhibit somatic and proximal dendritic [Ca(2+)](i) increases both indirectly by reducing firing rate and directly by decreasing the spike-evoked transients. Functionally, these data suggest that spike-evoked Ca(2+) signals in MPCh neurons should be largest during REM sleep when serotonin inputs are expected to be lowest even if equivalent firing rates are reached during waking. Such Ca(2+) signals may function to trigger Ca(2+)-dependent processes including cfos expression and nitric oxide production in a REM-specific manner.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号