首页 | 本学科首页   官方微博 | 高级检索  
     


A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica
Authors:Gan Qi  Lu Xunyu  Yuan Yuan  Qian Jiangchao  Zhou Huanjun  Lu Xun  Shi Jianlin  Liu Changsheng
Affiliation:The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
Abstract:Stimuli-sensitive mesoporous silica nanoparticles (MSNs)-based hybrid "gate-like" ensembles capable of performing specific programmed release mode represent a new generation delivery system in recent years. In this paper, a magnetic and reversible pH-responsive, MSNs-based nanogated ensemble was fabricated by anchoring superparamagnetic Fe(3)O(4) nanoparticles on the pore outlet of MSNs via a reversible boronate esters linker. To achieve this, MSNs and Fe(3)O(4) nanoparticles were first synthesized and functionalized by polyalcohol derivative and boronic acid, respectively. The successful incorporation of Fe(3)O(4) nanoparticles onto the MSNs was confirmed by the results of XRD, TEM, XPS and N(2) adsorption-desorption method. The pH-driven "gate-like" effect was studied by in vitro release of an entrapped model dexamethasone from the pore voids into the bulk solution at different pH values. The results indicated that at pH 5-8, the pores of the MSNs were effectively capped with Fe(3)O(4) nanoparticles and the drug release was strongly inhibited. While at pH 2-4, the hydrolysis of the boroester bond took place and thus resulted in a rapid release of the entrapped drug. And by alternately changing the pH from 3 to 7, these Fe(3)O(4) cap gate could be switched "on" and "off" and thereby released the entrapped drug in a pulsinate manner (in small portions). Additionally, this nanogated release system exhibited good magnetic property, high cell biocompatibility and cellular uptake for MC3T3-E1 cells. The present data suggest that it is possible to obtain simple and very effective pH-driven pulsinate release using these Fe(3)O(4)-capped-MSNs, and this new platform represents a promising candidate in the formulation of in vivo targeted delivery of therapeutic agents to low pH tissues, such as tumors and inflammatory sites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号