首页 | 本学科首页   官方微博 | 高级检索  
检索        


Toward the roles of store-operated Ca2+ entry in skeletal muscle
Authors:Bradley S Launikonis  Robyn M Murphy  Joshua N Edwards
Institution:1. School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
2. Department of Zoology, La Trobe University, Melbourne, VIC, 3086, Australia
Abstract:Store-operated Ca2+ entry (SOCE) has been found to be a rapidly activated robust mechanism in skeletal muscle fibres. It is conducted across the junctional membranes by stromal interacting molecule 1 (STIM1) and Orai1, which are housed in the sarcoplasmic reticulum (SR) and tubular (t-) system, respectively. These molecules that conduct SOCE appear evenly distributed throughout the SR and t-system of skeletal muscle, allowing for rapid and local control in response to depletions of Ca2+ from SR. The significant depletion of SR Ca2+ required to reach the activation threshold for SOCE could only be achieved during prolonged bouts of excitation–contraction coupling (EC coupling) in a healthy skeletal muscle fibre, meaning that this mechanism is not responsible for refilling the SR with Ca2+ during periods of fibre quiescence. While Ca2+ in SR remains below the activation threshold for SOCE, a low-amplitude persistent Ca2+ influx is provided to the junctional cleft. This article reviews the properties of SOCE in skeletal muscle and the proposed molecular mechanism, assesses its potential physiological roles during EC coupling, namely refilling the SR with Ca2+ and simple balancing of Ca2+ within the cell, and also proposes the possibility of SOCE as a potential regulator of t-system and SR membrane protein function.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号