首页 | 本学科首页   官方微博 | 高级检索  
     


Renal handling of thyroxine, 3,5,3'- and 3,3',5'-triiodothyronine, 3,3'- and 3',5'-diiodothyronine in man
Authors:J Faber  K Siersbaek-Nielsen  C Kirkegaard
Abstract:The 24-h urinary excretion and renal clearance of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), 3,3'-diiodothyronine (3,3'-T2), and 3',5'-diiodothyronine (3',5'-T2) were measured in 17 healthy subjects. The median urinary excretion was (pmol/24h) T4: 1242, T3: 828, rT3: 12.9, 3,3'-T2: 331, and 3',5'-T2: 5.8. The corresponding renal clearances were in median (ml/min) T4: 31, T3: 133, rT3: 15, 3,3'-T2: 683, and 3',5'-T2: 4.5. The clearances differed mutually (P less than 0.01) as well as from the creatinine clearance (P less than 0.01) which was in median 87 ml/min. Thus, all iodothyronines studied were subject to tubular transport mechanisms besides glomerular filtration. The 3 iodothyronines with 2 iodine atoms in the phenolic ring of the thyronine molecule, T4, rT3 and 3',5'-T2, were mainly tubularly reabsorbed, whereas those with only one iodine atom in the phenolic ring, T3 and 3,3'-T2, were mainly tubularly secreted. It might be hypothesized that the number of iodine atoms in the phenolic ring determines the direction of the tubular transport (presence of 2 iodine atoms is associated with tubular reabsorption, and of one iodine atom with secretion), whereas the rate of tubular transport decreases with decreasing number of iodine atoms in the tyrosylic ring.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号