首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mechanical properties and biocompatibility of melt processed,self-reinforced ultrahigh molecular weight polyethylene
Authors:Yan-Fei Huang  Jia-Zhuang Xu  Jian-Shu Li  Ben-Xiang He  Ling Xu  Zhong-Ming Li
Institution:1. State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering and, Sichuan University, Chengdu 610065, People''s Republic of China;2. Department of Biomedical Engineering, College of Polymer Science and Engineering and, Sichuan University, Chengdu 610065, People''s Republic of China;3. Rehabilitation Centre, Sport Hospital Attached to Chengdu Sport University, 251 Wuhou Temple Street, Chengdu 610041, People''s Republic of China
Abstract:The low efficiency of fabrication of ultrahigh molecular weight polyethylene (UHMWPE)-based artificial knee joint implants is a bottleneck problem because of its extremely high melt viscosity. We prepared melt processable UHMWPE (MP-UHMWPE) by addition of 9.8 wt% ultralow molecular weight polyethylene (ULMWPE) as a flow accelerator. More importantly, an intense shear flow was applied during injection molding of MP-UHMWPE, which on one hand, promoted the self-diffusion of UHMWPE chains, thus effectively reducing the structural defects; on the other hand, increased the overall crystallinity and induced the formation of self-reinforcing superstructure, i.e., interlocked shish-kebabs and oriented lamellae. Aside from the good biocompatibility, and the superior fatigue and wear resistance to the compression-molded UHMWPE, the injection-molded MP-UHMWPE exhibits a noteworthy enhancement in tensile properties and impact strength, where the yield strength increases to 46.3 ± 4.4 MPa with an increment of 128.0%, the ultimate tensile strength and Young's modulus rise remarkably up to 65.5 ± 5.0 MPa and 1248.7 ± 45.3 MPa, respectively, and the impact strength reaches 90.6 kJ/m2. These results suggested such melt processed and self-reinforced UHMWPE parts hold a great application promise for use of knee joint implants, particularly for younger and more active patients. Our work sets up a new method to fabricate high-performance UHMWPE implants by tailoring the superstructure during thermoplastic processing.
Keywords:Artificial joints  Ultrahigh molecular weight polyethylene  Melt processing  Flow accelerator  Self-reinforcement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号